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Heterogeneous materials, which are microinhomogeneous media in which the dimensions of 
inhomogeneities are considerably smaller than those in a specimen or an article (see [1, 2]), are finding 
ever-widening application in engineering (along with isotropic and homogeneous materials). Since the 
inhomogeneities are small and the their distribution in such a medium is of a statistical character, one can 
single out so-called representative volumes whose properties are uniform and correspond to the characteristics 
of the entire material, i.e., the microinhomogeneous medium can be considered microscopically homogeneous 
and characterized by a set of effective coefficients (electrical conductivity, thermal conductivity, elasticity, 
etc.). 

The effective characteristics of microinhomogenous media are largely determined by the service 
properties of the material. The possibility of wide variation of the volume portions of various constituents in 
composite materials enables one to produce materials with a necessary set of service characteristics. There 
are various methods for calculation of the effective characteristics of heterogeneous materials using data on 
the properties and structures of phase constituents [3, 4]. All of these are based on various assumptions 
that facilitate solution of the equations taking into account the complex character of the interaction between 
the structural elements of these materials and involve primarily calculation of the effective characteristics of 
two-phase materials [5-7]. 

A promising method for determining the elastic characteristics of heterogeneous materials is the self- 
consistent-field method [6]. The essence of this method is that the field of the particles of a multiphase 
system which are placed in turn in a homogeneous medium with characteristics of a certain reference body is 
equated to the average field of the particles of the given phase in the heterogeneous system. We extend this 
method to systems with an arbitrary distribution of the elastic characteristics of structural elements and also 
consider solution of the problem of the competing effect of dispersed particles on the effective characteristics of 
microinhomogeneous materials. To this end, we first consider the Eshelby problem [8] of the deformation of an 
elastic inclusion placed in an infinite homogeneous matrix of a material with different elastic characteristics. 
Let ~c be the restrained strain of inclusion of a larger size of the matrix material with elastic characteristics c m. 
We equate the stress in this inclusion under given uniform strain ~ to the strain in a foreign inclusion with 
properties c I with the same uniform strain [7]: 

c f :  (ec + ~) = era: (~c + ~ _  ~T). (1) 

Here e T is the strain incompatibility tensor; the division sign denotes the biscalar product of two tensors 
(el  : ec = c i i k i ~ C k i e i e j ) ;  e i  are unit vectors of the corresponding basis; summation from 1 to 3 is performed 
over repetitive indices. 

By virtue of the Eshelby's solution, the restrained strain tensor is related to the incompatibility tensor 
as follows: 

e c = N : e T or e T = W : e c, (2) 
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and the components of the Eshelby's tensor N = W -1 are given by 

1 m [ [ 02a'i(x 'x ')  q- 02apj (x 'x ' ) ]  dr, 
Nijkt c,,k, 1 t ox ox, j 

vO 

where @i(x,  x ~) is the Green tensor for an infinite homogeneous medium; and v0 is the region occupied by 
the inclusion. 

Taking into account that the strain in the foreign inclusion is the sum of the restrained and uniform 
strains (e I = e c + ~), from equality (1) with allowance for (2), we have 

~ i :  es  = ~ :  [ e s _  w :  ( e i _  ~)1. (3) 

Solving matrix Eq. (3), we obtain 

[ ( c m ) - '  : d - I I :  es  = w :  (~ - es )  

(I is a unit tensor of rank four). Then, 

_ es = N :  [(~m)-i : ~i  _ I]: e i .  

As a result, for the strain tensor of the foreign inclusion we find that 

e I = { I + N :  [ (cm)- l :  c l - I ] } - l :  ~. (4) 

When the matrix and inclusion materials arc. i~otropic, the tensors (cm) -1, c f,  and N can be written 
as [71 

6 ( g  m + 2~ ~)  1 1 _ ~  D = 3Kin V + D, 
(cm) -1 = 3k m V +  c S 3 K I V + 2 # I D ,  N -  3K m+2/zm 2#m , 5 ( g  m + 4 ~  m) 

where K re(f) and #re(f) are the volume and shear moduli of the matrix and the inclusion; V and D are the 
volume and deviator component of the unit tensor I. 

With allowance for this'decomposition, it is easy to obtain from equality (4) a formula for the strain 
of a spherical inclusion placed in an infinite medium and subjected to uniform deformation: 

~ , _ _ [  V D ] 
l + a ( K S - g  ~)  + l + b ( ~ S - ~ )  : ~" (5) 

Here  a = 3 / ( 3 K "  + 4~ m) and b = 6(K m + 2#m)/[5#m(3K m + 4#m)]. 
We use these formulas to determine the effective characteristics of a polydisperse system whose shear 

and volume moduli take the values #i and K/, respectively. 
Considering a homogeneous reference body with elastic characteristics #r and Kr and placing in it by 

turn single spherical inclusions with elastic characteristics #i and Ki, we require that, upon application of 
an external field {e) which is equal to the volume-averaged field of the polydisperse system, the field in the 
inclusion coincides with the average field in the corresponding phase ei. Then, according to (5), the average 
values of the strain tensors of the ith phase can be written as 

[ v o ] 
e l =  l + a r ( K i - K r )  + l + b c ( # i - # r )  : (e ) '  (6) 

where ar = 3/(3Kr + 4#r) and br = 6(Kr + 2#r)/[5#r(3Kr + 4#r)]. 
Substituting these values into the following expression for the tensor of average stresses in a 

heterogeneous system: 
n 

i=1 

and taking into account the generalized Hooke's law for macro- and microvolumes of a polydisperse medium 
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(a} = c '  : (e), o'i = c (i) : r we obtain for the effective characteristics: 

n c iKi  n ciiti 

K*  = ~ 1 + ar (Ki  - Kr ) '  ~* = y ~  1 + br(l~i - , r ) "  (7) 
i = I  i=1 

Here ci is the relative volume portion of the ith phase constituent. 
Note that the condition of additivity of the strain tensor average over the volume of the polydisperse 

system 

i=1 

and formulas (6) for the average strains over the volumes occupied by the corresponding phase components 
lead to relations for the characteristics of the reference body: 

II 

. ,~ 1"I (a~ "1 - Kr  + Ki) 
l I  ( a r  1 -  Kr + K i )  = ~ cj i=1 
i=1 j=l  a~ -1 - Kr + K /  ' 

. (8) 

. . I I  (b ;  -1 - i t r  + i ts)  

I I ( b ; - '  - it,  + its) = Z cj ,=1 
i=l  j = l  b r  1 - i t r  "l- i t j  

After identical transformations in equalities (7) and taking into account formulas (8), we find 

1 1 K * =  c/ - ( a ~  - I - K ~ ) ,  i t , =  c/ 
_ a; -1 - Kr  + Ki  _ b~ "1 - itr "~- i t i '  - -  (b71 - #r). (9) 

For the microinhomogeneous media satisfying the ergodicity condition [7], averaging over volume in 
equalities (9) can be replaced by statistical averaging over an ensemble of the corresponding bodies. Then the 
volume and shear moduli of the polydisperse system are written as 

--1 - 1  4 i t , =  { (pr (9Kr  + 8pr) -1 -1_  (10) 
g *  = P r + g 5 Pr , \ \ 6-'~r ~- "2-'~r ) + it 6(Kr + 2#r) ' 

where K and p are random moduli that takes the values Ki  and iti with probability ci. 

The proposed method for calculation of the effective elastic characteristics of polydisperse and 
multiphase systems can be used for materials with discrete and continuous distribution of the properties 
of the structural elements. Formulas (9) and (10) contain the variable parameters Pr and Kr which allows 
one to describe the effective characteristics of microinhomogeneous materials of arbitrary type. Thus setting 
in equalities (9) n = 2, #r = it1 = #m,  Kr = K1 = K "n and also #2 = i t l  and K2 = K I we determine the 
effective characteristics of a two-phase matrix system. If we let in these equalities pr = #* and Kr = K*, 
formulas (9) become formulas for the effective characteristics of a statistical system of equivalent phases, 
which correspond to the well-known method of a self-consistent field. 

As an illustration Fig. 1 gives the calculated and experimental values of Young's modulus for WC-Co 
composite produced by a powder technology [E* = 9 K * p * / ( 3 K *  + it*)]. In this case, the following elastic 
constants were used: K1 = 1.87- 1011 Pa and #1 = 0.81 �9 1011 Pa for cobalt and K2 = 3.92 �9 10 u Pa and 
/~2 = 3.04 �9 1011 Pa for tungsten carbide. As can be seen from the figure, the experimental values of Young's 
modulus [9, 10], shown by points, correspond to the solution obtained by the consistent model. At low and high 
concentrations, at which cobalt is a matrix and dispersed phase, these values are close to the corresponding 
solutions of matrix systems. 

Relations (10) can be used to solve problems of the mutual compensating effect of soft and rigid 
inclusions distributed randomly in a uniform matrix. Modeling such a material by a three-phase matrix 
system and assuming in equalities (7) that cl and c2 are the volume concentrations of the soft and rigid 
inclusions, and #s = #m = itr and Ks = K m = Kr, we equate the effective elastic characteristics to those of 
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the matrix material. As a result, we find that the compensating effect of dispersed particles on the volume 
modulus is ensured if their volume concentrations are in the ratio 

c2 ( g ,  - g ' ) ( 3 K 2  + 4 . ' )  
c, (g2 - g ' ) ( 3 g l  + 4 / " )  (11) 

If compensation of the pores is performed by the addition of absolutely rigid particles, passing to the 
limits K1 ---* 0 and / (2  ~ oo in equality (11) we have 

c2 3 K "  
cl - 4 / " "  (12) 

Then, by virtue of relations (7), the effective shear modulus is found from the equality 

r5.'(3K" + 4.')I 
6 ( K ' + 2 . ' 1  ] 

The dispersed particles in a three-phase matrix system have a compensating effect on the shear modulus 
provided that 

c2 ( . "  - .a )  [ / n ( 9 g "  + 8 / n )  + 6 .2(K m + 2 . ' ) ]  

c, ( . "  - .5) [ . ' (9K" + 8 . ' )  + 6. ,(K" + 2.')]" 

For .I  --+ 0 and .2 --+ oo we obtain 

c2/ci = 6(K" + 2. ' ) / (9K" + 8 . ' ) .  (13) 

In this case, for the effective modulus it follows from equality (7) that K ~ = K i n ( 1  - c l )  + ( 4 / 3 ) . ' c 2 .  
From relations (12) and (13) it follows in particular that the total compensating effect of the rigid 

inclusions on the elastic chaPacteristics of a porous material is possible only for the following ratio of the 
elastic properties of the matrix: 

K" = (4/3) # ' ,  (14) 

when the relative volume portions of pores and inclusions are similar. Condition (14) corresponds to Poisson's 
ratio v = 1/3 which holds for many pure metals. 

In particular, this is easily seen for lead and zinc from Table 1, which gives compensating ratios of 
the volume concentrations of some metals [11]. In addition, Table 1 shows that the concentration ratio that 
ensures the mutual compensation of the pores and rigid inclusions can vary over a wide range. 

The relative changes in the concentration ratios with allowance for the compliance of the dispersed 
particles is easily estimated from the formula 

I (c2/c,)5-1 I 6 100 %, (cUc,)---z u i" i 

where n = K ' / K 2  = K I / I ( "  or n = . ' / . 2  = # 1 / # ' ;  and c 2 / c l  is the ratio of the volume concentrations 
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TABLE 1 

Material 

Diamond 

Corundum 
Lead 
Zinc 
Copper 
Aluminum 
Gold 

~[,L m 

47.22 
19.98 
0.70 
4.82 
4.40 
2.55 
2.75 

gr?~ 

41.70 
24.00 

0.99 
6.88 
8.72 
7.78 
6.91 

C2/C1 (K m = K*) 

0.662 

0.901 
1.061 
1.071 
1.486 
2.288 
4.612 

41.704 
19.279 
0.715 
4.943 
5.202 
3.833 
6.854 

c /c, (~,,, = ~') 

1.085 
1.021 
0.979 
0.986 
0.943 
0.855 
0.772 

K I  

48.941 
22.994 

0.861 
5.955 
6.386 
4.814 

8.853 

ignoring the compliance of the dispersed particles. If the elastic characteristics of the dispersed particles differ 
by an order of magnitude from those of the matrix, the changes in the concentration ratios in compensation 
of, e.g., the volume moduli of lead and gold are 1 and 30%, respectively. 

Thus, using the self-consistent-field method, we obtained formulas for the effective elastic characteristics 
of polydisperse systems with an arbitrary distribution of the local elastic characteristics and also solved the 
problem of the competing effect of disperse particles on the elastic characteristics of matrix three-phase 
systems. Relations are determined for volume concentrations that ensure complete or partial compensation 
of pores and rigid inclusions in such materials. 
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